bimodal solutions in eigenvalue optimization problems*

A.S. BRATUS' and A.P. SEIFANIAN

The problem of maximizing the minimum eigenvalue of a selfadjoint operator is examined. An isoperimetric condition is imposed on the control variable. This problem has intexesting applications in the optimal design of structures. In papers on the optimization of the critical stability parameters and the frequencies of the natural oscillations of elastic systems/1-12/ it was shown that in a number of cases the optimal solutions are characterized by two or more forms of loss of stability or natural oscillations. In the case of conservative systems described by selfadjoint equations this signifies multiplicities of eigenvalues, i.e, of cxitical loads, under which loss of stability or of natural oscillation frequencies occurs. The necessary conditions for an extremum are obtained in the case when the optimal solution is characterized by a double eigenvalue. These conditions have a constructive character and can be used for the numerical and analytical solution of optimization problems. Both discrete and continuous cases of the specification of the original system are analyzed. Examples are given.

1. The discrete case. Consider the eigenvalue problem

$$
\begin{equation*}
A[h] u=\lambda u \tag{1.1}
\end{equation*}
$$

Here $A[h]$ is an $m \times m$-matrix with coefficients $a_{i j}(h)(i, j=1, \ldots, m)$ depending smoothly on the components of the vector h of dimensions n, u is an m-dimensional vector, and λ is an eigenvalue.

We formulate the optimization problem as follows: find a parameter vector $h=\left(h_{1}, h_{2}, \ldots\right.$, h_{n}) for which the minimum eigenvalue λ will be a maximum under the condition

$$
\begin{equation*}
V(h)=V_{0} \tag{1,2}
\end{equation*}
$$

where V is a scalar function and V_{0} is a given constant. It is assumed that V is differentiable with respect to the variables $h_{i}(i=1,2, \ldots, n)$. We assume that a parameter vector $h_{0}=$ $\left(h_{1}{ }^{0}, h_{2}{ }^{\circ}, \ldots, h_{n}{ }^{\circ}\right)$ exists for which problem (1,1), has a double eigenvalue which is the smallest of all the eigenvalues. The eigenvectors corresponding to the multiple eigenvalue λ_{0} are assumed to be orthogonal and normalized, and are denoted by u_{1} and u_{2}. Any eigenvector u_{0} corresponding to the double λ_{0} can be represented as a Iinear combination of eigenvalues u_{1} and u_{n}, with coefficients γ_{1} and γ_{2}

$$
\begin{equation*}
u_{0}=\gamma_{1} u_{1}+\gamma_{2} u_{2} \tag{1.3}
\end{equation*}
$$

We give an increment εk, to the parameter vector h, where k is an n-dimensional vector and ε is a small number, and we find the increments of the double eigenvalue and the eigenvectors /13/

$$
\begin{equation*}
u=\gamma_{1} u_{1}+\gamma_{2} u_{2}+\varepsilon v+o(\varepsilon), \lambda=\lambda_{0}+\varepsilon \mu+o(\varepsilon) \tag{1.4}
\end{equation*}
$$

where $\gamma_{1}, \gamma_{2}, \mu, v$ are quantitites to be determined. Substituting expansions (1.4) into (1.1) and collecting terms of the order of ε, we obtain

$$
\begin{equation*}
A_{1}\left[h_{0}, k\right] u_{0}+A\left[h_{0}\right] v=\lambda_{0} v+\mu u_{0} \tag{1.5}
\end{equation*}
$$

where u_{0} is defined by (1.3), and $A_{1}\left[h_{0}, k\right]$ is a symmetric $m \times m$-matrix with coefficients $\left(\mathbb{V} a_{i}\right.$, $k), i, j=1,2, \ldots m$, where

$$
\nabla a_{i j}=\left(\frac{\partial a_{i j}}{\partial h_{1}}, \frac{\partial a_{i j}}{\partial h_{2}}, \ldots, \frac{\partial a_{i j}}{\partial h_{n}}\right), \quad k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)
$$

The partial derivatives of the coefficients of the matrix A are computed for $h=h_{0}$
By scalar multiplication of Eq. (1.5) in succession by the vectors u_{1} and u_{2} and using the equation $A\left[h_{0}\right] u_{i}=\lambda_{0} u_{i}, i=1,2$, as well as the orthogonality of the vectors u_{1} and. u_{2}, we obtain lineax homogeneous equations in the unknown coefficients γ_{1} and γ_{2}

[^0]\[

$$
\begin{aligned}
& \gamma_{1}\left(\alpha_{11}-\mu\right)+\gamma_{2} \alpha_{12}=0, \gamma_{1} \alpha_{21}+\gamma_{2}\left(\alpha_{22}-\mu\right)=0 \\
& \alpha_{i j}=\left(A_{1}\left[h_{0}, k\right] u_{i}, u_{j}\right) ; i, j=1,2
\end{aligned}
$$
\]

For non-zero γ_{1} and γ_{2} to exist it is necessary and sufficient that the determinant of this system equal zero. This yields a quadratic equation in μ

$$
\begin{equation*}
\mu^{2}-\left(\alpha_{11}+\alpha_{22}\right) \mu+\left(\alpha_{11} \alpha_{22}-\alpha_{12}^{2}\right)=0 \tag{1.6}
\end{equation*}
$$

In view of the symmetry of the matrix $A_{1}[h, k]$ we have $\alpha_{12}=\alpha_{21}$. Hence it follows that the roots of Eq. (1.6) are real.

It is convenient to introduce the n-dimensional vectors

$$
\begin{equation*}
f_{1}=\sum_{i j=1}^{m} u_{i}{ }^{1} u_{j}{ }^{1} \nabla a_{i j}, \quad f_{2}=\sum_{i j=1}^{m} u_{i}{ }^{2} u_{j}{ }^{2} \nabla a_{i j}, \quad f_{3}=\sum_{i j=1}^{m} u_{i}{ }^{1} u_{j}{ }^{2} \nabla a_{i j} \tag{1.7}
\end{equation*}
$$

where $u_{i}{ }^{1}, u_{i}{ }^{2}(i=1,2, \ldots, m)$ are the coordinates of the eigenvectors u_{1}, u_{2}. With due regard to the notation introduced we obtain $\alpha_{11}=\left(f_{1}, k\right), \alpha_{12}=\alpha_{21}=\left(f_{3}, k\right), \alpha_{22}=\left(f_{2}, k\right)$. Equation (1.6) has the solutions

$$
\begin{equation*}
\mu_{1,2}=\frac{\left(f_{1}+f_{2}, k\right)}{2} \pm\left[\frac{\left(f_{1}+f_{:}, k\right)^{2}}{4}+\left(f_{3}, k\right)^{2}-\left(f_{1}, k\right)\left(f_{2}, k\right)\right]^{1 / 2} \tag{1.8}
\end{equation*}
$$

Thus, in accordance with formulas (1.7) we can compute the vectors f_{1}, f_{2}, f_{3} from the matrix A and the eigenvectors μ_{1} and μ_{2}, and then, by specifying the variation vector k, from (1.8) we obtain the increments μ_{1} and μ_{2} of the eigenvalue. Note that when k changes sign the eigenvalue increments change their signs as well. It is important to distinguish the cases when the quantitites u_{1} and u_{2} have the same or different signs which, according to Viet's theorem
$\mu_{1} \mu_{2}=\left(f_{1}, k\right)\left(f_{2}, k\right)-\left(f_{3}, k\right)^{2}$, are determined by the sign of the quadratic form in the components of the vector k.

By varying the isoperimetric condition (1.2) and equating to zero the linear part of the increment of the functional V with respect to ε, we obtain

$$
\begin{equation*}
\left(f_{0}, k\right)=0, f_{0}=\nabla V \tag{1.9}
\end{equation*}
$$

The latter signifies that the variation of the parameter vector k must be orthogonal to the vector f_{0}. We will formulate the first statement.
10. If the vectors $f_{0}, f_{1}, f_{2}, f_{3}$ are linearly independent ($n \geqslant 4$), then a refining variation k of the parameter vector h_{0} exists for which each of the perturbed eigenvalues is larger than the original eigenvalue $\lambda_{0}, \mu_{1}>0, \mu_{2}>0$.

Proof. Consider the quadratic form

$$
\begin{equation*}
L(k)=\left(f_{3}, k\right)^{2}-\left(f_{1}, k\right)\left(f_{2}, k\right) \tag{1.10}
\end{equation*}
$$

If for some k the form (I.10) has negative values, then both roots μ_{1} and μ_{2} will have the same sign. If, in addition, $\left(f_{3}, k\right)=0$, then according to (1.8), $\mu_{1}=\left(f_{1}, k\right)$ and $\mu_{2}=\left(f_{2}, k\right)$.

Let us show that a non-zero vector k always exists, which is a solution of the system of linear equations

$$
\begin{equation*}
\left(f_{0}, k\right)=0,\left(f_{3}, k\right)=0,\left(f_{1}, k\right)=p_{1}>0,\left(f_{2}, k\right)=p_{2}>0 \tag{1.11}
\end{equation*}
$$

Indeed, by virtue of the assumption that the vectors $f_{0}, f_{1}, f_{2}, f_{3}$ are linearly independent, the rank of this system's matrix equals four, which signifies the existence of non-zero vectors k satisfying the system of linear equations (1.11). The latter proves the possibility of constructing a refining variation in the case considered.

We will now study the case when the system of vectors $f_{0}, f_{1}, f_{2}, f_{3}$ is linearly dependent. Let us consider the linear subspace of all vectors spanned by the vectors $f_{0}, f_{1}, f_{2}, f_{3}$ and in this subspace choose an orthogonal basis f_{0}, e_{1}, e_{2} (the dimensions of the subspace are no higher than three). We assume that $\left(f_{0}, f_{0}\right)=\left(e_{1}, e_{1}\right)=\left(e_{2}, e_{2}\right) \neq 0$. We expand the vectors f_{1}, f_{2}, f_{3} with respect to the basis vectors

$$
\begin{aligned}
& f_{1}=b_{0} f_{0}+b_{1} e_{1}+b_{2} e_{2}, f_{2}=c_{0} f_{0}+c_{1} e_{1}+c_{2} e_{2} \\
& f_{3}=d_{0} f_{0}+d_{1} e_{1}+d_{2} e_{2}
\end{aligned}
$$

Here $b_{i}, c_{i}, d_{i}(i=0,1,2)$ are the coordinates of the vectors f_{1}, f_{2}, f_{3} in the basis chosen.
We complete the basis f_{0}, e_{1}, e_{2} up to an orthogonal basis for the whole space, having added on to it the vectors $e_{3}, e_{4}, \ldots, e_{n-1}$. By virtue of condition (1.9) we represent the vector $k=l_{1} e_{1}+l_{2} e_{2}+\ldots+l_{n-1} e_{n-1}$ with arbitrary constants $l_{i}(i=1,2, \ldots, n-1)$.

Substituting the resultant expansions into (1.10), we obtain

$$
\begin{align*}
& L(k)=D l_{1}{ }^{2}+2 B l_{1} l_{2}+C l_{2}{ }^{2} \tag{1.12}\\
& D=d_{1}{ }^{2}-b_{1} c_{1}, B=d_{1} d_{2}-1 / 2\left(b_{1} c_{2}+b_{2} c_{1}\right) \\
& C=d_{2}{ }^{2}-b_{2} c_{2}
\end{align*}
$$

We will formulate the next statement.
2°. If the parameter vector h_{0} yields an extremum of the optimization problem with a double eigenvalue λ_{0}, then it is necessary that: 1) the system of vectors $f_{0,} f_{1}, f_{2}, f_{s}$ be linearly dependent and 2) the quadratic form (1.10) should admit of only non-negative values for any admissible non-zero vectors k, wihich is equivalent to the conditions $D \geqslant 0, D C-B^{2} \geqslant 0$. where D, B, C are defined by Eqs. (1.12).

Proof. The necessity of the first condition follows from statement 1°. Let us prove the necessity of the second condition. Suppose that the vector h_{0} yields an extremum of the optimization problem with a double eigenvalue λ_{0}. If form (1.10) admits of negative values for some vector k, then the roots μ_{1}, μ_{2} will have the same sign. By changing, if necessary, the sign of the vector k we can arrange for both roots to be strictly positive, which indicates the possibility of choosing a refining variation which splits the multiple eigenvalue λ_{0}. Consequently, for an extremum it is necessary that form (1.10) be non-negative for all nonzero k. Using representation (1.12), from this we obtain $D \geqslant 0, D C-B^{2} \geqslant 0$.

Note that form (1.10) can take zero values as well, as follows from the existence of nonzero vectors k orthogonal to the subspace formed by the vectors $f_{0}, f_{8}, f_{3}, f_{3}$.

The conditions imposed on the coefficients D, B, C, obtained above, can be constructed directly by using the linear dependence of the vectors $f_{0}, f_{1}, f_{3}, f_{3}$. To do this we will write the linear combination $\delta_{0} f_{0}+\delta_{1} f_{2}+\delta_{2} f_{2}+\delta_{3} f_{8}=0$, where the coefficients δ_{i} do not all equal zero simultaneously. For example, let $\delta_{3} \neq 0$. Then we express the vector f_{3} in terms of the vectors f_{0}, f_{1}, f_{2}, substitute it into (1.10) and use (1.9). As a result we obtain a quadratic form in the quantities $\left(k, f_{1}\right),\left(k, f_{2}\right)$

$$
\begin{equation*}
L(k)=\delta_{1}{ }^{2}\left(k, f_{1}\right)^{2}+\left(2 \delta_{1} \delta_{2}-\delta_{3}{ }^{2}\right)\left(k, f_{1}\right),\left(k, f_{3}\right)+\delta_{2}{ }^{2}\left(k, y_{2}\right)^{2} \tag{1.13}
\end{equation*}
$$

which is non-negative if

$$
\begin{equation*}
\delta_{1} \delta_{2} \geqslant \delta_{3}^{2 / 4} \tag{1.14}
\end{equation*}
$$

We can verify that the other cases $\left(\delta_{1} \neq 0\right.$ or $\left.\delta_{2} \neq 0\right)$ also lead to inequality (1.14). Condition (1.14) is analogous to the conditions $D>0, D C-B^{2} \geqslant 0$.

Strict inequality in (1.14) ensures that form (1.13) is positive definite. In this case $L(k)=0$ if and only if $\left(k, f_{1}\right)=\left(k, f_{2}\right)=0$ under the condition $\left(k, f_{0}\right)=0$. Because of the linear dependence of the vectors $f_{4}, f_{1}, f_{2}, f_{3}$ we also obtain $\left(k, f_{y}\right)=0$. Note that the system of equations $\left(k, f_{i}\right)=0(i=0,1,2,3)$ always has non-trivial solutions when $n \geqslant 4$. From (1.8) it follows that $\mu_{1}=\mu_{2}=0$, and the question of the optimality of the vector h_{0} reduces to an investigation of the signs of the second variations of the double eigenvalue λ_{0}.

Consider the case $n=3$. Let the rank of the matrix composed of the vectors $f_{0}, f_{1} ; f_{n}, f_{3}$ equal three. Then the system of linear equations $\left(k, f_{t}\right)=0(i=0,1,2,3)$ admits of only the trivial solution $k=0$. Thus, in this case the condition $\delta_{1} \delta_{2}>\delta_{3}^{3} / 4$ is a sufficient extremum condition in the optimization problem being considered, since $L(k)>0$ for any non-zero k satisfying the condition $\left(k, f_{0}\right)=0$. Similarly, in the aase $n=2$, when the rank of the matrix composed of the vectors $f_{0}, f_{1}, f_{2}, f_{3}$ equals two, the condition $\delta_{1} \delta_{2}>\delta_{3}^{2 / 4}$ is a sufficient extrumum condition.

Example. Consider the oscillatory system shown in the figure $/ 10 /$. The oscillations of this system axe described by the equa-

Fig.1

$$
\begin{equation*}
(c, h)=c_{\mathrm{y}} h_{1}+c_{\mathrm{s}} h_{2}+c_{\mathrm{s}} h_{\mathrm{s}}=c_{0}>0 \tag{1.15}
\end{equation*}
$$

and maximizing the double natural oscillation frequency. Here $c_{3}(t=0,1,2$, 3) are certain specified numbers.

In accordance with Eqs. (1.7) we write the vectors

$$
f_{1}=\frac{1}{m}(2,1,0), \quad f_{2}=\frac{1}{m}(0,0,1), \quad f_{5}=0, \quad f_{0}=\left(c_{1}, c_{2}, c_{3}\right)
$$

From (1.10) and condition (1.9) become

$$
L(k)=-\left(f_{1}, k\right)\left(f_{2}, k\right) ;(c, k)=0 ; k=\left(k_{1}, k_{3}, k_{3}\right)
$$

If the vectors f_{0}, f_{1}, f_{2} are linearly independent, it is possible to construct a refining variation. Otherwise, we have the equation $c_{1}=2 c_{2}$, being the first necessary optimality condition for the vector $\left(h_{1}, h_{4}, 2 h_{1}+h_{2}\right)$. Because of the linear dependence of the vectors we have $\delta_{0} f_{0}+\delta_{1} f_{1}+\delta_{2} f_{3}=0$ with certain constants δ_{0}, δ_{1} and δ_{2}. Hence we find $\delta_{1}=-\delta_{0} c_{1} m / 2$, $\delta_{2}=-\delta_{0} c_{3} m$. Condition (1.14) becomes

$$
\delta_{1} \delta_{2}=\delta_{0}^{2} m^{2} c_{1} c_{9} / 2 \geqslant 0
$$

Thus, the necessary extremum conditions reduce to: $c_{1}=2 c_{2}, c_{1} c_{3} \geqslant 0$. Using the isoperimetric condition and the condition for a minimum of the double natural frequency, we Einally obtain the relation between the rigidities $h_{i}^{\circ}>0$, which realizes the maximum of the minimum double eigenvalue

$$
h_{3}^{0}=\frac{c_{0}}{c_{3}+c_{3}}, \quad 2 h_{1}^{0}+h_{2}^{0}=\frac{c_{0}}{c_{8}+c_{3}}, \quad 2 h_{1}^{0}>\frac{c_{0}}{c_{2}+c_{3}} \frac{I}{l m}
$$

where the parameters of the problem satisfy the inequalities

$$
c_{1}=2 c_{3} ; c_{t}>0, i=0,1,2,3 ; l m / I>1
$$

This example admits of an intuitive geometric interpretation of the necessary extremum conditions. In the case considerea the vectors f_{1}, f_{2}, f_{0} are vectors normal to the surfaces $\lambda_{1}=$ const, $\lambda_{2}=$ const and to the constraint surface in the space of the parameters h_{1}, h_{2}, h_{3}. Therefore, the necessary extremum conditions reduce to the coplanarity of the vectors f_{1}, f_{2}, f_{0} and to the condition that vector f_{0} belong to the cone formed by f_{1} and f_{2}.

We note that in view of the homogeneity of the functional mini λ_{i} and the constraint (1.15) on the vector of variables $h=\left(h_{1}, h_{2}, h_{3}\right)$, the optimization problem being considered is equivalent to the dual problem/14/

$$
\min _{h}(c, h) \text { with } \min _{i} \lambda_{2}=\lambda_{0}=\text { const }>0
$$

2. The continuous case. Consider the problem of the loss of stability of an elastic rod of variable cross-section, compressed by a longitudinal force. In diemensionless variables the equations determining the buckling $w(x)$ when there is a loss of stability are $/ 1,2 /$

$$
\begin{equation*}
\left(h^{2} w^{n}\right)^{n}=-\lambda w^{n}, w(0)=w^{\prime}(0)=w(1)=w^{t}(1)=0 \tag{2.1}
\end{equation*}
$$

if it is assumed that the ends $x=0$ and $x=1$ the rod are clamped.
The optimization problem consists of determining the cross-sectional area $h(x)$ of the rod ($h(x)$ is a non-negative continuous function) for which the critical force of loss of stability λ_{0} will be a maximum. It is assumed that the volume (weight) of the rod is fixed

$$
\begin{equation*}
\int_{0}^{1} h(x) d x=1 \tag{2.2}
\end{equation*}
$$

Suppose that a function $h_{0}(x)$ satisfying (2.2) exists, for which the least of the eigenvalues of problem (2.1), λ_{0}, is double. Let $u_{1}(x)$ and $u_{1}(x)$ be two linearly independent functions corxesponding to the multiple eigenvalue λ_{0}. Consider the linear subspace of all functions, formed from u_{1} and u_{2}. In this subspace we choose the basis in a special way, namely, functions $w_{1}(x)$ and $w_{2}(x)$ such that ($\delta_{i ;}$ is the Kronecker delta)

$$
\begin{equation*}
\int_{0}^{1} w_{i}^{\prime}(x) w w_{j}^{\prime}(x) d x=\delta_{i j}, \quad i, j=1,2 \tag{2.3}
\end{equation*}
$$

Any eigenfunction corresponding to the double eigenvalue λ_{0} can be represented as

$$
\begin{equation*}
w_{0}(x)=\gamma_{1} w_{1}(x)+\gamma_{2} w_{2}(x) \tag{2.4}
\end{equation*}
$$

We give the function $h_{0}(x)$ an extension in the form $\varepsilon \delta h$, where z is a small positive number. From (2,2) it follows that

$$
\begin{equation*}
\int_{0}^{1} \delta h d x=0 \tag{2.5}
\end{equation*}
$$

Let us apply the results of an analytic perturbation of the spectrum of a selfadjoint operator $/ 13 /$. We will denote by $v(x)$ a function representing an addition to the unperturbed eigenfunction $w_{0}(x)$. Arguing as in the finite-dimensional case, we arrive at the equations

$$
\begin{aligned}
& \left(2 h_{0} \delta h w_{0}^{\prime}\right)^{\prime \prime}+\left(h_{0}{ }^{2} v^{*}\right)^{\prime \prime}+\lambda_{0} v^{\prime \prime}+\mu w_{0}^{*}=0 \\
& v(0)=v^{\prime}(0)=0, \quad v(1)=v^{\prime}(1)=0
\end{aligned}
$$

Here μ denotes the magnitude of the addition to the multiple eigenvalue λ_{0}, which occurs when the function $h_{0}(x)$ is varied.
scalarly multiplying the last equation by the functions $w_{1}(x)$ and $w_{1}(x)$ and using Eq. (2.1) with $\lambda=\lambda_{0}$ and $w=w_{0}(x)$, as well as the orthogonality property (2.3), we arrive at the equations determining the magnitude of the first correction with respect to ε of the perturbed eigenvalue, of the same as in Sect.1. For non-zero γ_{1} and γ_{2} to exist it is necessary that the condition

$$
\begin{align*}
& \mu^{2}-\left(\beta_{11}+\beta_{22}\right) \mu+\beta_{11} \beta_{22}-\beta_{12}{ }^{2}=0 \tag{2.6}\\
& \beta_{i j}=2 \int_{0}^{1} h_{0} w_{i}{ }^{\prime} w_{j}{ }^{\prime \prime} \delta h d x, \quad i, j=1,2
\end{align*}
$$

be satisfied.
The symmetry of the matrix of the coefficients $\beta_{i j}$ signifies that all roots of Eq. (2.6) are real. Just as in the discrete case, the solutions of Eq. (2.6) are invariant to the choice of the orthogonal basis w_{1} and w_{2} satisfying condition (2.3). The following statement holds.
3°. If the system of functions $f_{1}=h_{0}\left(w_{1}{ }^{\prime \prime}\right)^{2}, f_{3}=h_{0}\left(w_{2}{ }^{\prime \prime}\right)^{2}, f_{8}=h_{0} w_{1}{ }^{\prime \prime} w_{2}{ }^{\prime \prime}$ and $f_{0}=1$ are linearlyindependent then a refining variation $8 h$ exists for which each of the perturbed eigenvalues will be larger than the original multiple eigenvalue λ_{0}.

Proof: Consider the functional form of the function oh

$$
\begin{equation*}
H(\delta h)=\frac{1}{4}\left(\beta_{12}^{2}-\beta_{11} \beta_{22}\right)=\left[\int_{0}^{1} h_{0} w_{1}{ }^{\prime \prime} w_{2}^{\prime \prime} \delta h d x\right]^{2}-\left[\int_{0}^{1} h_{0} w_{1}{ }^{\mu^{2}} \delta h d x\right]\left[\int_{0}^{1} h_{0} w_{2}^{\mu^{2}} \delta h d x\right] \tag{2.7}
\end{equation*}
$$

As in the discrete case, we will show that when the functions $f_{0}, f_{2}, f_{2}, f_{3}$ are linearly independent a variation δh always exists satisfying the relations $\beta_{12}=0, \beta_{11}=p_{1}>0, \beta_{2 n}=p_{2}>$ 0 and condition (2.5). We note that $\mu_{1}=p_{1}>0, \mu_{2}=p_{2}>0$ when these relations are satisfied. This signifies precisely that the variation δh is a refining variation.

Let us consider a linear functional in the space $L(0,1)$ of absolutely integrable functions

$$
\begin{equation*}
F(f)=\int_{0}^{1} f \delta h d x, \int_{0}^{1}|f| d x<\infty, \quad f \in L(0,1) \tag{2.8}
\end{equation*}
$$

where $\delta \boldsymbol{h}$ is a fixed bounded function.
The functions $f_{0}, f_{1}, f_{2}, f_{s}$ defined above belong to the space $L(0,1) / 15 /$. We consider the linear subspace $M E L(0,1)$.formed by the functions $f_{0}, f_{1}, f_{2}, f_{3}$, we will show that in the set M a linear functional (2.8) exists generated by some bounded function $8 h^{*}$ such that

$$
\int_{0}^{1} f_{3} \delta h^{*} d x=0, \quad \int_{0}^{1} \delta h^{*} d x=0, \quad \int_{0}^{1} f_{1} \delta h^{*} d x=p_{1}>0, \quad \int_{0}^{1} f_{2} \delta h^{*} d x=p_{2}>0
$$

Indeed, for any function $f \in M$ the expansion $f=c_{0} f_{0}(x)+\ldots c_{s} f_{s}(x)$ holds. Hence follows the linearity of the functional

$$
F^{*}(f)=\int_{0}^{1} f \delta h^{*} d x, \quad f \in M
$$

To prove the continuity of $F^{*}(f)$ it is sufficient to show that a number d exists for which

$$
\left|F^{*}(f)\right|=\left|\int_{0}^{1} \sum_{i=0}^{s} c_{i} f_{i} \delta h^{*} d x\right|=\left|c_{1} p_{1}+c_{2} p_{2}\right| \leqslant d \int_{0}^{1}\left|\sum_{i=0}^{s} c_{i} f_{i}\right| d x
$$

Then

$$
d=\sup _{\sum_{i=0}^{3} c_{i}^{2}=1}\left|c_{1} p_{1}+c_{2} p_{2}\right|\left(\int_{0}^{1}\left|\Sigma c_{4} f_{i}\right| d x\right)^{-1}
$$

The upper bound of the last expression exists on the strength of the assumption of the linear independence of the system of functions $f_{i}(i=0,1,2,3)$, which proves the continuity of $F^{*}(f)$.

The functional F^{*} constructed in this way in the set M can, by the Hahr-Banach theorem, be extended while preserving the norm (of the number d) over the whole space $L(0,1) / 16 /$. The latter signifies the possibility of constructing a refining variation in the case considered.

The following statement also holds.
4°. If the function h_{0} provides an extremum of the optimization problem considered with a double eigenvalue λ_{0}, it is necessary that

1) the system of functions $f_{0}=1, f_{1}=h_{0} w_{1}{ }^{\prime 2}, f_{2}=h_{0} w_{2}{ }^{\prime 2}, f_{3}=h_{0} w_{1}{ }^{\prime \prime} w_{2}{ }^{\prime \prime}$ should be linearly dependent, i.e., a constant $\delta_{0}, \delta_{1}, \delta_{2}$ and δ_{3} exists such that

$$
\begin{equation*}
\left[\delta_{1} w_{1}{ }^{\prime \prime 2}+\delta_{2} w_{2}{ }^{\prime \prime}+\delta_{3} w_{1}{ }^{\prime \prime} w_{2}{ }^{n}\right] h_{0}=\delta_{0} \tag{2.9}
\end{equation*}
$$

2) the functional form $H(\delta h)$ specified by Eq. (2.7) should admit of only non-negative values for any functions $\delta \boldsymbol{h}$ satisfying condition (2.5).

Proof. The necessity of the first condition follows from the preceding statement. Arguing as in the proof of statement 2°, we obtain the necessity of the second condition. We will simply show that form (2.7) can take zero values with admissible $\delta h \neq 0$. For this we consider a linear subspace $M \subset L(0,1)$ generated by the functions $f_{0}, f_{1}, f_{2}, f_{3}$ and in the space $L(0,1)$ we choose an element $g(x)$ not belonging to the subspace M. We form a new subspace M^{\prime} generated by the elements $f_{0}, f_{1}, f_{2}, f_{3}$ and g. Further, as in the proof of the preceding statement, let us show that a functional $F^{*}(f), f \in M^{\prime}$, exists, which takes zero values in the subspace M while $F^{*}(g)=1$. While preserving the norm we extend the functional obtained, by the HahnBanach theorem, to the whole space $L(0,1)$.

It is difficult to verify the condition of non-negativity of form (2.7) in the form presented. However, we can introduce a constructive condition suitable for practical use. It follows directly from condition (2.9) which can be written as $\delta_{1} f_{1}+\delta_{2} f_{2}+\delta_{3} f_{3}=\delta_{0}$. Arguing as in sect.1, we obtain the condition for form (2.7) to be non-negative

$$
\delta_{1} \delta_{2} \geqslant \delta_{3}^{2 / 4}
$$

Example. Consider the problem of the loss of stability of a freely supported rod of variable cross-section lying on an elastic foundation. Introducing dimensionless variables, we write the equation for the rod's buckling

$$
\begin{aligned}
& \left(h^{2} u^{*}\right)^{*}+k u+\lambda u^{*}=0 \\
& u(0)=u(1)=0, \quad h^{2} u^{\prime}(0)=h^{2} u^{*}(1)=0
\end{aligned}
$$

Here k is a quantity characterizing the coefficient of the elastic foundation's bed, and λ is an eigenvalue (the stability loss force).

It is well-known /17/ that when $h=h_{0} \equiv 1$ problem (2.1) has a double eigenvalue when $k=4 \pi^{4}$. The corresponding eigenfunctions

$$
u_{1}=\frac{\sqrt{2}}{\pi} \sin \pi x, \quad u_{i}=\frac{\sqrt{2}}{2 \pi} \sin 2 \pi x
$$

are orthogonal and normalized in accordance with (2.3). We consider a variation $\delta \mathrm{h}$ satisfying the volume-constancy condition

$$
\begin{equation*}
\int_{0}^{1} 8 h d x=0 \tag{2.10}
\end{equation*}
$$

The functions $f_{a}, f_{1}, f_{2}, f_{s}$ take the form

$$
f_{0}=1, f_{1}=2 \pi^{2} \sin ^{2} \pi x=\pi^{2}(1-\cos 2 \pi x)
$$

$f_{2}=8 \pi^{2} \sin ^{2} 2 \pi x=4 \pi^{2}(1-\cos 4 \pi x)$
$f_{3}=4 \pi^{2} \sin \pi x \sin 2 \pi x=2 \pi^{2}(\cos \pi x-\cos 3 \pi x)$
These functions are linearly independent. Consequently, accoraing to the statements prov ed it is possible to construct the refining variation.

Taking into account the isoperimetric condition (2.5) we write the form (2.7)

$$
\left.H(\delta h)=4 \pi^{4} \mid\left(\int_{0}^{1}(\cos \pi x-\cos 3 \pi x) \delta h d x\right)^{2}-\int_{0}^{1} \cos 2 \pi x \delta h d x \int_{0}^{1} \cos 4 \pi x \delta h d x\right]
$$

We expand the function δh in a Fourier series in $\cos j \pi x(j=1,2,3 \ldots)$. The isoperimetric condition (2.10) is satisfied here for any coefficients c_{j}. Substituting the expansion of oh into form $H(0 h)$, we obtain

$$
H(\delta h)=x^{4}\left[\left(c_{1}-c_{y}\right)^{2}-c_{x} c_{4}\right]
$$

As an example we take $c_{1}=c_{9}=0, c_{2}=c_{1}=-1$. Then $H(0 h)<0$. In addition, in this case

$$
\int_{0}^{1} f_{3} \delta h d x=0
$$

and consequently

$$
\mu_{1}=\int_{0}^{1} f_{1} \delta \hbar d x=\frac{\pi^{2}}{2}, \quad \mu_{y}=\int_{0}^{1} f_{8} \delta h d x=2 x^{2}
$$

Thus, the refining variation has the form

$$
\delta h(x)=-(\cos 2 \pi x+\cos 4 \pi x)+\sum_{j=5}^{\infty} c_{j} \cos j \pi x
$$

where the coefficients c_{b}, c_{6}, \ldots are arbitrary constants.
Note that if together with constraint (2.2) we impose additional conditions on the func-
tion h, then, using the arbitrariness of the coefficients c_{5}, c_{4}, \ldots we can satisfy them.
The authors thank A.A. Mironov, N. Ol'khoff and F.L. Chernous*ko for useful discussions.

REFERENCES

1. OLHOFF N. and RASMUSSEN S.H., On single and bimodal optimum buckling loads of clamped columns. Internat. J. Solids and Struct., Vol.13, No.7, 1977.
2. OL'KHOFF N., Optimal Design of Structures. Moscow, MIR, 1981.
3. ARMAN Zh. -I., LUR'E K.A and CHERKAEV A.V., On the solution of eigenvalue optimization problems arising in the design of elastic structures. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.5, 1978.
4. MASUR E.F. and MRXZ Z., Nonmstationary optimality conditions in structural design. Internat. J. Solids and Struct., Vol.15, No.6, 1979.
5. PRAGER S. and PRAGER W., A note on optimal design of columns. Internat. J. Mech. Sci. Vol. 21, No. 4, 1979.
6. SEYRANIAN A.P. (*) Sensitivity analysis and optimization of aeroelastic stability. Internat. J. Solids and Struct. Vol. 18, No.9, 1982.
7. EANAOKA M. and WASHIZU K., Optimum design of Beck's column. Comput. and Struct. Vol.11, No.6, 1980.
8. MEDVEDEV N.G., Some spectral singularities of optimal problems of the stability of shells of variable thickness. Dok1. Akad. Nauk tkrsSR, Ser.A, No.9, 1980.
9. CLAUDON J.-L. and SUNAKAWA M., Optimizing distributed structures for maximum flutter load. AIAA Journal, Vol.19, No. 7, 1981.
10. CHOI K.K. and HAUG E.J., Optimization of structures with repeated eigenvalues. In: Optimization of Distributed Parameter Structures. Alphen aan den Rijn, Netherlands: Sijthoff \& Noordhoff, 1981.
11. BLACHUT J. and GAJEWSKI A. On unimodal and bimodal optimal design of funicular arches. Internat. J. Solids and Struct., Vol.17, No.7, 1981.
12. LARICHEV A.D., A method of finding the minimum volume of a beam on an elastic foundation for a given value of the cirtical load. In: Applied and Theoretical Investigations of Building Structures. Moscow, Izd. TsNIISK im. V.A. Kucheronko, 1981.
13. COURANT R, and HILBERT D., Methods of Mathematical Physics. Vol.1, New York, Interscience Publ., 1953, (or 1962).
14. SEYRANIAN A.P. Homogeneous functionals and structural optimization problems. Internat. J. Solids and Struct. Vol.15, No.10, 1979.
15. MIKHLIN S.G., Variational Methods in Mathematical Physics. English translation, Pergamon Press, Book No. 10146, 1964.
16. KOLMOGOROV A.N. and FOMIN S.V., Elements of the Theory of Functions and Functional Analysis. Bethesda, MD, Graylock Press, 1961.
17. TIMOSHENKO S.P., Vibrations in Engineering. Moscow, FIZMATGIZ, 1959.

Translated by N.H.C.

[^1]
[^0]: *Prik1. Matem. Mekhan., Vol.47,No.4,pp. 546-554,1983

[^1]: *) Also see: SEIRANIAN A.P. . Sensitivity analysis and optimization of aeroelastic stability characteristics. Preprint Inst. Problem Mekhan. Akad. Nauk SSSR, Moscow, No. $162,1980$.

