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~i~ODAL SOLUTIONS IN EI~~~YALU~ OPT~~I~T~ON P~O~L~S* 

AS. BRATUS' and A-P. SEIPANIAN 

The problem of maximizing the minimum eigenvalue of a selfadjoint operator 
is examined. in isoperimetric condition is imposed on the control variable. 
This problem has interesting applications in the optimal design of StrX&X.res. 
In papers on the optimization of the critical stability parametersandthe 
frequencies of the natural oscillations of elastic systems /l-W it was 
shown that in a number of cases the optimal solutions are characterized by 
two or more forms of loss of stability or natural oscillations. In the 
case of conservative systems described by selfadjoint equationsthissigni- 
fies multiplicities of eigenvalues, i.e., of critical loads, under which 
loss of stability or of natwal oscillation frequencies occurs. The neces- 
sary conditions for an extremum are obtained in the case when the optimal 
solutionischaracterized by a double eigenvafue. These conditions have a 
constructive character and can be used for the numerical and analytical 
solution of optimization problems. Both discrete and continuous cases of 
the specification of the original system are analyzed. Examples are given. 

1. The discrete case. Consider the eigenvalue problem 

A IhI u = ?& 0.1) 

Here A [h] is an m x m-matrix with coefficients +j (h)(t, j = i,..., m) depending smowthly on 
the components of the vector h of dimensions n,u is an m-dimensional vector, and h is an eigen- 
value. 

We formulate the optimization problem as follows: find a parameter vector h = &, hp,.. ., 
h,) for which the minimum eigenvalue li will be a maximum under the condition 

V(h) = V, ~1.21 

where V is a scalar function and V, is a given constant. It is assumed that Vis different- 
iable with respect to the variables h,(i = 1,2, _._,a), 
(A;, fbPO,. . .Adf 

We assume that a parameter vector h,= 
exists for which problem (1.1) .has a double eigenvalue which is the smallest of 

all the eigenvalues. The eigenvectors corresponding to the multiple eigenvalue h, are assumed 
to be orthogonal and normalized , and are denoted by z+and Us. Any eigenvector .'lo correspond- 
ing to the double h, can be represented as a linear combination of eigenvalues z+and y, with 
coefficients yr and ye 

JJO = Yl& + Yzu, (1.3) 

we give an increment ek, to the parameter vector h, where k is an n-dimensional vector and e 
is a small number, 
/13/ 

and we find the increments of the double eigenvalue and the eigenvectors 

U = PlUl -i- YzU, + sv + 0 (e), h i? he + ep f e (s) (1.4) 

where yl. yo, ~t,v are quantitites to be determined. 
and collecting terms of the order of a, we obtain 

Substituting expansions Cl.41 into (1.1) 

A,&. kiu, + A l&J u = h,u + p. (1.5) 

where ll-,, is defined by (1.3), 
k), i. j = 1, 2,. . .m, where 

and A,I~o. kf is a symmetric m x m-matrix with coefficientsfg~~~, 

Qa,,= -$,$.$..., an 
i 

ao,j 
n ) 

1 k=s(k,, ka, . . . , Fi,j 

The partial derivatives of the coefficients of the matrix A are computed for h = h, 
BY scalar multiPlication of Eq.(I.5) in succession by the vectors u,and u,and using the 

equation A Iholui = Loui, i = 1, 2, as well as the orthogwnality of the vectors rt,and. c+,, we 
obtain linear homogeneous equations in the unknown coefficients yz and yt 
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Yl (an - P) + wla = 0, wzl + yz (arz - P) = 0 
CQj = (A, Ih*, kl l&, Uj); i, j = 1,2 

For non-zero y,and y, to exist it is necessary and sufficient that the determinant of this 
system equal zero. This *yields a quadratic equation in p 

P* - (au + %*) CL + (ona** - al**) = 0 (1.6) 

In view of the symmetry of the matrix A,[h,kl we have au = a,,. Hence it follows that the 
roots of Eq.(1.6) are real. 

It is convenient to introduce the n-dimensional vectors 

f*=,$, 

m 111 

uiluj’v%jv f*- X 4’Uj*V%j ,. 
+=I 

fs = 2 U+'Uj'Va*j 
ij-1 

(1.7) 

where q', u,* (i = 1,2,. . ., m) are the coordinates of the eigenvectors I+,&. With due regardto 
the notation introduced we obtain all = (fi, k), al* = q, = (f*, k), a** = (f*, Is). Equation (1.6) 
has the solutions 

p,,2 = tfl +2fl’ ‘) f l.+k.it + (f*, k)* - (f,, k) (f*, k) j”’ 
11.8) 

Thus, in accordance with formulas (1.7) we can compute the vectors fl,f*,fs from the matrix 
A and the eigenvectors prand h,and then, by specifying the variation vector k, from (1.8) 
we obtain the increments pIand hoof the eigenvalue. Note that when k changes sign the eigen- 
value increments change their signs as well. It is important to distinguish the cases when 
the quantitites urand u, have the same or different signs which, according to Viet's theorem 
PIPS = VU 4 US, 4 - Us, k)', are determined by the sign of the quadratic form in the components 

of the vector k. 
By varying the isoperimetric condition (1.2) and equating to zero the linear part of the 

increment of the functional V with respect to e, we obtain 

Vo, k) = 0, fo = V J’ 
(1.9) 

The latter signifies that the variation of the parameter vector k must be orthogonal to the 
vector f*. We will formulate the first statement. 

lo. If the vectors for fl9 f*9 fs are linearly independent (n>4), then a refining varia- 
tion k of the parameter vector h,exists for which each of the perturbed eigenvalues is larger 
than the original eigenvalue &I, PI> 0, IL, > 0. 

Proof. Consider the quadratic Eorm 

L (k) = (f*, k)* - (A, k) (f*, k) (1.10) 

If for some k the form (1.10) has negative values, then both roots pL1 and pewill have the same 
sign. If, in addition, (f*, k) = 0, then according to (1.8), pL1 = (fi, k) and pS = (fi, k). 

Let us show that a non-zero vector k always exists, which is a solution of the system of 
linear equations 

(f,,, k) = 0, (f*, k) = 0, (fl, k) = ~1 > 0, (f*T k) = PZ :, 0 (1.11) 

Indeed, by virtue of the assumption that the vectors fo,fi,f,,fs are linearly independent, the 
rank of this system's matrix equals four, which signifies the existence of non-zero vectors 
k satisfying the system of linear equations (1.11). The latter proves the possibility of con- 

structing a refining variation in the case considered. 
we will now study the case when the system of vectors fo,fi,fz,fs is linearly dependent. 

Let us consider the linear subspace of all vectors spanned by the vectors fo,fl,f*,fr and in 

this subspace choose an orthogonal basis f*, e,,e* (the dimensions of the subspace are no 
higher than three). We assume that cfO, fo) = (e,, e,) = (e*, e,) # 0. We expand the vectors fl, fi, f3 
with respect to the basis vectors 

fl = b,f, + b,e, + he,, fa = %fo + Gel + %e, 

fs = &do + dIeI + 4e2 

Here bi,q,d,(i = 0,1,2) are the coordinates of the vectors fu f*t f* in the basis chosen. 

We complete the basis fo, e,,e* up to an orthogonal basis for the whole space, having ad- 

ded on to it the vectors e,, e,,. . ., G-1. by virtue of condition (1.9) we represent the vector 

k = Z,e, + Z*e* + . . . + Z,,_,e,,-l with arbitrary constants li (i = 1, 2,...,n - 1). 

substituting the resultant expansions into (l.lO), we obtain 

L (k) = Dl,* + 2Bl,l, + Clza (1.12) 

D = d12 - blc,, B = d,d* - 112 (blc, + b*c,) 

C = d*= - b,c, 



453 

We will formulate the next statement. 
20. If the parameter vector h, yields an extremum of the OptimiZatiOn problem with a 

double eigenvalue h,, then it is necessary that: 1) the sys$em of vectors fez frTfa,frr be linear- 
ly dependent and 2) the guadratic form (1.10) should admit of only non-negative values for 
any admissible non-zero vectors k, which is equivalent to the conditions D>O,DC-_>;;;a. 

whexe D,B,C are defined by Egs.(l.l2). 

proof. The necessity of the first condition follows from Statement lo. Let Us provethe 

necessity of the second condition. Suppose that the vector h, yields an extremum of the 
optimiaation problem with a double eigenvalue h,. If form (1.10) admits of negative values 
fax some vector k, then the raots pi, @% will have the same sign. 3y changing, if necessary, 
the sign of the vector k we can arrange for both roots to be strictly positive, which&n&cat- 
es the possibility of choosing a refining variation which splits the multiple eigenvalue iL,,. 
Consequently, for an extremum it is necessary that form (1.10) be non-negative for all non- 
zero k. Using representation (1.121, from this we obtain D 20, 1)C --BP > 0. 

Note +&at form Cl.101 chin take zero values as well, as follows from the existence of non- 
zero vectors k orthogonal to the subspace formed by the vectors fe, fX, fsrt ft. 

The conditions imposed on the coefficients .L?,@,C, obtained above, can be constructed 
directly by using the linear dependence of the vectors fe* f,,fs* fs. TO do this we will write 
the linear combination Sj,, +6J, + Sje + Sjs = 0, where the coefficients 6t do not all equal 
zero simultaneously. For example, let &,#O. Then we express the vector fr in terms of the 
vectors fo, jr, fn, substitute it into f1,l.O) and use (1.9). As a result we obtain a quadratic 
form in the quantities (k, fl), (k, fi) 

which is non-negativeif 

6x6, > &f/h (1.14) 

We can verify that the other cases @l,PO or h#O) also lead to inequality (1.14). 
Condition 11.14) is analogous to the conditions I)>o,zX-PB",O. 

Strict inequality in (1.14) ensures that form (1.13) is positive definite. In this; case 
b(k) = 0 if and only if {k,f,)= (k,fJ = 0 under the condition (k, fo) = 0. Because of the 

linear dependence of the vectors fotfi,js,ft we also obtain (ktfa) =; 0, Note that the system of 
equations (k,fJ = O(t = 0,1,2,3) &ways has non-trivial solutions when n>k From (1.8) it 
follows that Pl = PLO = 0, and the question of the optimality of the vector &reduces to an 
investigation of the signs of the second variations of the double eigenvalue A,,. 

Consider the case n 
equal three. 

= 3. Let the rank of the matrix composed of the vectors fo, fi;fr,fa 
Then the system of linear equations '(k, f,) = 0 (i = 0,1, 2, 3) admits of onlythe 

trivial solution k = 0. Thus, in this case the oondition li,S,> &,% is a sufficient extremum 
condition in the optimization problem being considered, since L(k)> 0 for any non-zero k 
satisfying the condition (k, fe) 10. Similarly, in the aase T+ = 2, when the rank ofthemarrix 
composed of the vectors fe,fsl jz,js equals two, the condition S,S,>6,% is a sufficient ex- 
trumum condition. 

ifXB@S- Consider the oscillatory system shown in the figure ,/lO/. 
The oscillations of this system are described by the qua- 

-L 
where hi@= t,2,3) are the rigidities of the couplings, m 
is the mass of the rigid rod, Z& is its length, .Iistherod*s 
moment of inertia relative to the point 0, and a, (i = 1, 2, 3) 
are the displacements and the angle of rotation. 
values are 

The eign- 

Fig.1 
respectively. If 2hl+h:=+, then we have a double natural 

frequency (it is assumed that 21hr/1>h&. 
We consider the problem of choosing the rigidities 

dition 
hi30 (L= 1,2,3) satisfying the con- 
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(c, h) = ~&l + 4% + c&s = co > 0 11.15) 

and maximining the double natural oscillation frequency. Here c,(t = 0, 1, 2, 3) are certain 
specified numbers. 

In accordance with Eqs.cl.7) we write the vectors 

fi = + (2. 1.0). fz =; (&O. I), fa = 0, fo = (Cl, e:, es) 

From (1.10) and condition (1.9) become 

L(k) = - (!I, k) (f~,kf; (e. W = 0; k = (h,k,,k,) 

If the vectors fc,fi, f. are linearly independent, it is possible to construct a refining 
variation. Otherwise, we have the equation cl= 2c,, being the first necessary optLmal.ity con- 
dition fox the vector (~.h,.u?+iQ. Because of the linear dependence of fhe vectors we have 
6&+81f1-!-6&=O with certain constants 6,. 81 and 8,. Bence we find 61= -60c1ml2, bL = -80boem. 
Condition (1.14) becomes 

6,6, = 8,We,c,l2 > 0 

Thus, the necessary extremum conditions reduce to: cl== 2+, e~c,&O. Using the isoperi- 
metric condition and the condition for a minimum of the double natural frequency, we 
finally obtain tie rdation between the rigidities hi’ > 0, which realizes the maximum 
of the minimum double eigenvalue 

where the parameters of the problem satisfy the inequalities 

h = 2c*; c* >o, i = 0, 1, 2, 3; lmif > i 
This example admits of an intuitive geometric interpretation of the necessary extremum 

conditions. In the case considered the vectors f,,fr,fo are vectors normal to the surfaces 
)il=const, &=coast and to the constraint surface in the space of the parameters ht,hI,kl. There- 

fore, thenecessary extremum conditions reduce to the coplanarity of the vectors h,fn,fa and to 
the condition that vector f. belong to the cone formed by fl and fp 

We note that in view of the homogeneity of the functional minibi and the constraint (1.15) 
on the vector of variables h=(kl,kl,Asf, the optimization problem being considered is eguival- 
ent to the dual problem /14/ 

minh (c. k) With mini k1 = h, = coast> 0 

2. The continuous case. Consider the problem of the loss of stability of an elasticrod 
of variable cross-section, compressed by a longitudinal force. In diemensionless variables 
the equations determining the buckling ru(x)when there is a loss of stability are A,21 

(I&#")* = A.&, W (0) = w' (0) = w(1) = W' (1) = 0 (2.1) 

if it is assumed that the ends x = 0 and 2 = 1 the rod are clamped. 
The optimization problem consists of determining the cross-sectional area h (s)of the rod 

(h(s) isanon-negativecontinuous function) for which the critical force of loss of stability 
h, will be a maximum. It is assumed that the volume (weight) of the rod is fixed 

s hfx)dx==-l 
0 

(2.2) 

Suppose that a function h,(x) satisfying (2.2) exists, for which the least of the eigen- 

values of problem (2.11, k,, is double. Let u%(z) and h(x) be two linearly independent 
functions corresponding to the multiple eigenvalue &. Consider the linear subspace of all 

functions, formed from uland g. In this subspace we choose the basis in a special way, namely, 
functions wXfx) and w%(x) such that& is the Xronecker delta1 

5 q'(t)q'(z)&-8~j, f, j== 1, 2 (2.3) 
0 

Any eigenfunction corresponding to the double eigenvalue I, can be represented as 

wo (2) = YlWl (2) + Y¶ % (s) (2.4) 

we give the function h,(s) an extension in the form s&b, where a is a small Positive number. 
From (2.2) it follows that 

Bh&==o 
0 

(2.5) 



455 

Let us apply the results of an analytic perturbation of the spectrum of a selfadjoint 
operator /13/. We will denote by v(z)a function representing an addition to the unperturbed 
eigenfunction w0 (s). Arguing as in the finite-dimensional case, we arrive at the equations 

(%& IUo'Y + (Wu*)* + h,u" + Ilwoo' = 0 

Y(0) = u' (0) = 0, v fi) = u' (1) = 0 

Here p denotes the magnitude of the addition to the multiple eigenvalue h,, which occurswhen 
the function h,(z) is varied. 

Scalarly multiplying the last equation by the functions 14 (z) and W%(Z) and usingEq.(2.1) 
with h = ht, and W = W,(+ as well as the orthogonality property (2.3), we arrive at the 
equations determining the magnitude of the first correction with respect to eof the perturbed 
eigenvalue, of the same as in Sect-l. For non-zero a and y8 to exist it is necessary that 
the condition 

be satisfied. 

(2.6) 

The symmetry of the matrix of the coefficients fiij signifies that all roots of Eq.(2.6) 
are real. gust as in the discrete case, the solutions of Eq.12.61 are invariant to the choice 
of the orthogonal basis zul and w, satisfying condition (2.3). The following statement holds. 

3O. If the system of functions fi = h, (w~‘)~, fs = h, (w,‘)*, fs = hflk’w,* and f. = 1 are 

linearlyindependentthen a refining variation 81t exists for which each of the perturbed eigen- 
values will be larger than the original multiple eigenvalue li,. 

Proof. Consider the functional form of the function Sh 

As in the discrete case, we will shiw that when the iunctions jO,;C,f,,f, are linearly in- 

(2.7) 

dependent a variation 6h always exists satisfying the relations #& = 0, fJu = pr>O, #Su = p,> 
0 and condition (2.5). We note that ~~ = pl>O, pi = p,> 0 when these relations are satis- 
fied. This signifies precisely that the variation &h is a refining variation. 

Let us consider a linear functional in the space L(O,i) of absolutely integrable func- 
tions 

where Sh is a fixed bounded function. 
The functions fo,fX,fa,fs defined above belong to the space L (0, 1) /15/. We consider 

the linear subspace MEL (0,l) .formed by the functions fo,fI,fr,fr. We will show that in the 
set Ma linear functional (2.8) exists generated by some bounded-function &* such that 

5 f&h* dz - 0, s bh*dztO, j fi6h*dx==p,>O, ~f&h*d-=ps>O 
cl D 0 0 

Indeed, for any function fE M the expansion f = c&(z)+ . . . cds (x) holds. Hence follows 
the linearity of the functional 

F+ (f) = 5 f&h* dx, ffM 
e 

To prove the continuity of F*(j) it is sufficient to show that a 
which 

Then 

number d exists for 

The upper bound of the la&t expression exists on the strength of the assumptionofthe linear 
independence of the system of functions fr (i = 0,1, 2, 3), which proves the continuity of F+ v). 
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The functional F* constructed in this way in the set Mean, by the Hahn-Banach theorem, be 
extended while preserving the norm (of the number d) over the whole space L(0, 1) /16/. The 
latter signifies the possibility of constructing a refining variation in the case considered. 

Th@ following statement also holds. 
do. If the function &, provides an extremum of the optimization problem considered with 

a double eigcrnvalue Lo, it is necessary that 
1) the system of functions f0 = 1, fi = h,,wlnz, fa = hOw,“z, fs = h,w,“w,’ should be linearly 

dependent, i.e., a constant 6,, 8,, 6, and 6, exists such that 

K&W,"z + 6,~~"~ + 6,w,"w,"l h, = 6, (2.91 

2) the functional form X(&a) specified by Eq. (2.7) should admit of only non-negative 
values for any functions 8h satisfying conditfon (2.5). 

P?XXtf. The necessity of the first condition follows from the preceding statement. Argu- 
ing as in the proof of statement 2O, we obtain the necessity of the second condition. We will 
simply show that form (2.7) can take zero values with admissible 6h z$zO. For this we consider 
a linear subspace McL(O,I) generated by the functions f,,, fi, fs,f3 and in the space L(O,l) 
we choose an element g(t)not belonging to the subspace i&f. We form a new subspace M'generat- 
ed by the elements f*, 1~. fs, fs and 4. Further, as in the proof of the preceding statement, let 
us show that a functional F* @,f~ M’, exists, which takes zero values in the subspace M 
while F*-(g) = i. While preserving the norm we extend the functional obtained, by the Hahn- 
Banach theorem, to the whole space L (0.1). 

it is difficult to verify the condition of non-negativityof form (2.7) in the form pre- 
sented. However, we can introduce a constructive condition suitable for practical use. It 
follows directly from condition (2.9) which can be written as 8ji + cizfi + Sjo = 6,. Arguing 
as in Sect.1, we obtain the condition for form (2.7) to be non-negative 

Example. Consider the problem of the loss of stability of a freely supported rod of.vari- 
able cross-section lying on an elastic foundation. Introducing dimensionless variables, we 
write the equation for the rod's buckling 

(h%‘f’ f ku + 5@' = 0 
u (0) = u(i) = 0, hW(0) = k’u” (if = 0 

Here k is a quantity characterizing the coefficient of the elastic foundation's bed, and 
A is an eigenvalue (the stebility loss force). 

It is well-known /17/ that when h.=kpEi problem (2.1) has a double eigenvalue when 
k= M. The corresponding eigenfunctions 

are orthogonal and normalized in accordance with (2.3). We consider a variation 8h satisfy- 

ing the volume-constancy condition 

56hdr=O (2.10) 
0 

The functions fe.f~,f,,l~ take the form 

lo=& ~~j:2n~sin~ru=n*(1-~coa2N) 
f,= 8rrlsia' 2nz =4s'(1-ccos4n3) 
f* = 49 sin a% ain 2nr = 26 (COB Itr - co9 8s.z) 

These functions are linearly independent. Consequently, according to the statementsprov- 

ed it is possible to construct the refining variation. 
Taking into account the isoperimetric condition (2.5) we write the form (2.7) 

we expand the function 66 in a Fourier series in COSJ~X (j = 1, 2, 3...). The isoperimetric 

condition (2.10)is satisfied here for any coefficients cl- Substituting the expansion of 8h 

into form H(#& we obtain 
a (8h) = rr'f(c1 - cJ= - C&l 

As an example we take c,=c~=o,c~s=c~==-~. Then trf&<O. In addition, in this case 

s 
fst5hdt=O 

0 

and consequently 
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Thus, the refining variation has the form 

where the coefficients cl,+.. are arbitrary constants. 
Note that if together with constraint (2.2) we impose additional conditions on the func- 

tion h, then, using the arbitrariness of the coefficients c&,&,...+ we can satisfy them. 
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